Radical Polymers as Anodic Charge Extraction Layers in Small Molecule Organic Photovoltaic Devices
نویسندگان
چکیده
Organic photovoltaic (OPV) devices based on the copper (II) phthalocyanine(CuPc)/ fullerene(C60) system are an innovative photovoltaic technology optimal for situations requiring low-cost, transparent, and flexible devices. Furthermore, the high degree of reproducibility of this system allows for the ready study of new OPV technologies. Here, we have used this system to elucidate systematic structure-property-performance relationships for a new OPV anode modifier. The addition of interfacial modifier materials between the organic CuPc/C60 layers and the metallic anode drastically can improve efficiency. Radical polymers are a class of polymers with aliphatic backbones and pendent stabilized radical groups. Here, we utilize poly(2,2,6,6tetramethylpiperidinyloxy methacrylate) (PTMA) to examine the feasibility of radical polymers as anode modifiers. OPV devices utilizing a PTMA thin film deposited onto an ITO substrate (anode) with subsequent CuPc and C60 active layers followed by a BCP cathode modifier and an aluminum layer (cathode) were fabricated using thermal evaporation. Device performance was evaluated by measuring current density as a function of voltage during simulated solar radiation. Addition of a thin layer of PTMA between the ITO and CuPc layers increased device power conversion efficiency to approximately 0.95% from a control of 0.57%, likely due to enhancement of the crystal structure of the CuPc layer. The addition of interfacial modifiers significantly increases the overall efficiency, and consequently, viability of CuPc/C60 OPV devices, and this logic should be extendable to a myriad of other polymer based solar cell designs.
منابع مشابه
Photovoltaic Cells Based on Conducting Polymers and Perylene Diimides: Preprint
NREL has recently begun investing polymer-based photovoltaic cells. We present initial results on a novel energy conversion device that uses both semiconducting polymers and organic small molecules as photoactive layers, using the advantageous properties of both classes of materials. By incorporating polymers into the device, we see results that are surprisingly good for a planar organic device...
متن کاملUtilising solution processed zirconium acetylacetonate as an electron extracting layer in both regular and inverted small molecule organic photovoltaic cells
Interfacial layers are commonly employed in organic photovoltaic (OPV) cells in order to improve device performance. These layers must be transparent, stable, be compatible with the photo-active materials and provide efficient charge extraction with a good energetic match to the relevant organic material. In this report we demonstrate the compatibility of zirconium acetylacetonate (ZrAcac) elec...
متن کاملNanoscale structure, dynamics and power conversion efficiency correlations in small molecule and oligomer-based photovoltaic devices
Photovoltaic functions in organic materials are intimately connected to interfacial morphologies of molecular packing in films on the nanometer scale and molecular levels. This review will focus on current studies on correlations of nanoscale morphologies in organic photovoltaic (OPV) materials with fundamental processes relevant to photovoltaic functions, such as light harvesting, exciton spli...
متن کاملImproving Hybrid Solar Cells: Overcoming Charge Extraction Issues in Bulk Mixtures of Polythiophenes and Zinc Oxide Nanostructures!
Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues in Bulk Mixtures of Polythiophenes and Zinc Oxide Nanostructures! ! Grant Olson! ! ! Organic photovoltaics (OPVs) have received a great deal of focus in recent years as a possible alternative to expensive silicon based solar technology. Current challenges for organic photovoltaics are centered around improving their lifetimes a...
متن کاملA dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells
We demonstrate efficient planar perovskite solar cells using a dopant-free donor–acceptor (D–A) conjugated small molecule as a hole transport material. The photovoltaic cell reaches a power conversion efficiency (PCE) of 14.9%, which is comparable to or even better than that of the devices using the traditional doped 2,20,7,70-tetrakis(N,N0-di-p-methoxyphenylamine)-9,90-spirobifluorene (spiroOM...
متن کامل